Revisit of the Cardiac Inward Rectifier Potassium Current IK1
نویسندگان
چکیده
Inward rectifier potassium currents are present in different types of cells. In the heart, the inward rectifier potassium current IK1 plays a crucial role in maintaining cardiac resting membrane potential and excitability. It is generally believed that the strong inward rectification of cardiac IK1 channels makes it conduct substantial current near the resting potential but carry little or no current at depolarized potentials. However, recent studies in native cardiac myocytes and HEK 293 cell line stably expressing human Kir2.1 gene have demonstrated that a significant transient outward current carried by IK1 channels is activated by the upstroke of action potential. This review will revisit cardiac IK1 channels, especially the previously-ignored transient outward component of IK1 carried by Kir2.1 channels.
منابع مشابه
Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes
BACKGROUND Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hy...
متن کاملCorrelating the Magnitude and Spatial Gradient of Alternans
OF THESIS CORRELATING THE MAGNITUDE AND SPATIAL GRADIENT OF ALTERNANS Electrical restitution has been shown to inaccurately predict the occurrence of alternans of action potential duration. A new method using the spatial gradient of alternans (SGA) is proposed to predict alternans and cardiac electrical stability. A simulated 1-D strand of tissue was used to compare indexes computed from restit...
متن کاملDecreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes
Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current IK1, which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we inves...
متن کاملBackground potassium current active during the plateau of the action potential in guinea pig ventricular myocytes.
Background outward K+ currents in guinea pig ventricular myocytes were characterized over a broad range of membrane potentials, including those corresponding to the plateau of the action potential. The background current that is blocked by 1 mM Ba2+ (IK,p) activates within 5 msec at positive potentials, does not inactivate, and deactivates very rapidly on repolarization. IK,p is insensitive to ...
متن کاملFunctional characterization of inward rectifier potassium ion channel in murine fetal ventricular cardiomyocytes.
AIMS Previous studies have shown the dramatic changes in electrical properties of murine fetal cardiomyocytes, while details on inward rectifier potassium current (IK1) are still seldom discussed. Thus we aimed to characterize the functional expression and functional role of IK1 in murine fetal ventricular cardiomyocytes. METHODS Whole cell patch clamp was applied to investigate the electroph...
متن کامل